

CIVIL ENGINEERING • SURVEYING • LANDSCAPE ARCHITECTURE

STORMWATER MANAGEMENT PLAN

for the

Deer Brook Apartments, Phase II Gray Road (SR-115) North Yarmouth, Maine

prepared for

United Properties, Inc. 9 Thomas Drive Westbrook, Maine 04098

-i -

January 2021

TABLE OF CONTENTS

EXECUT	IVE SUMMARY	1								
Ι.	Introduction1									
II.	Existing Conditions	1								
111.	 A. Land Cover B. Site Topography C. Surface Water Features D. Soils E. Historic Flooding Proposed Development	1 1 1 2 2								
IV.	A. Alterations to Land Cover Downstream Ponds and Waterbodies	2 2								
v .	Regulatory Requirements	2								
VII.	 A. Town of North Yarmouth,, Maine B. Maine Department of Environmental Protection (Maine DEP) Peak Flow Analysis 	2 3 3								
VIII.	 A. Modeling Technique B. Drainage Characteristics (Pre-Development and Post-Development Watershed Delineation) C. Comparison Water Quality Analysis 	3 3 3 4								
IX.	Conclusions	4								

Attachments:

- A. HydroCAD Output Pre-development and Post-development TR-20 Model
- B. Inspection, Maintenance and Housekeeping Plan
- C. Pre-development Watershed Map
- D. Post-development Watershed Map

STORMWATER MANAGEMENT PLAN

Deer Brook Apartments Gray Road (SR-115) North Yarmouth, Maine

EXECUTIVE SUMMARY

The proposed project is a six unit residential apartment complex located on the existing Deer Brook Apartment site off of Gray Road (SR-115) in North Yarmouth, Maine. The site is identified as Lot 27 on the Town of North Yarmouth Tax Map 15 in the Farm Forest Zone. The total parcel area is approximately 33.4 acres.

The proposed development will include three (3), 1,966 square foot duplexes. The three buildings will be accessed by a 22' wide access way loop off of the existing Deer Brook Apartments access way. Other impervious areas associated with this development pavement and gravel areas, utility improvements and stormwater infrastructure. The development will create 21,058 sf (0.48 acres) of new impervious surface and will disturb approximately 116,232 sf (2.67 acres) including the disturbance within the street right-of-way.

The project site is tributary to the Royal River which is not currently classified as an impaired waterway by the Maine Department of Environmental Protection (Maine DEP). The project will be subject to the Town of North Yarmouth Subdivision Plan Final Review Ordinance regarding stormwater management and the Maine DEP Chapter 500 basic standards regarding erosion and sediment control. A detention basin is proposed to provide water quantity control for the proposed development.

STORMWATER MANAGEMENT PLAN

Deer Brook Apartments Gray Road (SR-115) North Yarmouth, Maine

I. <u>Introduction</u>

This Stormwater Management Plan has been prepared to address the impacts associated with the construction of the proposed six unit rental and associated access road. The stormwater management controls that are outlined in this plan have been designed to best suit the existing site conditions and to comply with applicable regulatory requirements.

II. <u>Existing Conditions</u>

The project site is currently wooded and sloped, with the existing Deer Brook Apartments located to the south.

- A. <u>Land Cover</u>: The site abuts Gray Road (SR-115) to the west, Maine Central Railroad tracks to the east, and residential properties to the north and south. Access to the site is provided by an existing access road to the Deer Brook Apartments from Gray Road (SR-115). The site is comprised of undeveloped woods and terrain.
- B. <u>Site Topography</u>: The portion of the property that will be developed is relatively rugged, with slopes in most areas between 10 and 20%. Just north of the extents of the proposed development exists slopes 20% or greater.
- C. <u>Surface Water Features</u>: In the pre-developed condition, half of the site slopes towards the existing road, into an existing natural swale to an on-site wetlands, and eventually into the Royal River. The rest of the site drains towards the north into another natural swale, through the same wetland complex and also ends in the Royal River. The existing Deer Brook Apartments on the adjacent site also drains all stormwater to the Royal River.
- D. <u>Soils</u>: Soil characteristics were obtained from the Natural Resources Conservation Service Soil Survey. Soils identified on the site (or within close proximity) are identified below in Table 1. These soil boundaries have been identified on the attached Watershed Maps.

Table 1 – Proximity Soil Types and Characteristics								
Soil Type	Symbol	HSG						
Suffield Silt Loam, 15 to 25% Slopes	SuD2	С						
Suffield Silt Loam, 8 to 15% Slopes	SuC2	С						

The hydrologic soil group (HSG) designation is based on a rating of the relative permeability of a soil, with Group "A" being extremely permeable such as coarse sand, and Group "D" having low permeability such as clay.

E. Historic Flooding: There are no apparent flooding problems associated with this development site.

III. <u>Proposed Development</u>

The proposed development includes the construction of 6 rental units (a total of 5,898 sf total), an access drive, and associated pavement and gravel areas. The project will include public water and on-site septic disposal systems, overhead electric, telephone and cable service and stormwater infrastructure.

Detention of stormwater runoff will be provided using retention basin.

A. <u>Alterations to Land Cover</u>: Approximately 21,058 sf (0.48 acres) of new impervious surface will be created as a result of the proposed project. This area includes the proposed buildings, pavement and gravel areas. The project will disturb an additional 95,174 sf (2.19 acres) which will be revegetated with lawn and landscaping in the post-development condition. The total developed area of the project site is estimated to be 116,232 sf (2.67 acres).

IV. <u>Downstream Ponds and Waterbodies</u>

The majority of stormwater runoff from the site will be directed to the proposed detention basin. Due to the existing terrain of the site, some stormwater runoff from the proposed units will be directed towards the northern side of the property and not to the detention basin. The basin discharges through a proposed 12" CPP culvert crossing under the proposed access drive. Runoff eventually discharges to the Royal River.

V. <u>Regulatory Requirements</u>

A. <u>Town of North Yarmouth, Maine</u>: The Town of North Yarmouth Land Use Ordinance requires development projects to provide "adequate provisions must be made for the collection and disposal of all stormwater that runs off proposed driveways, parking areas, roofs, and other surfaces to prevent adverse impacts on abutting or downstream properties". The Land Use Ordinance also includes provisions for controlling erosion and sedimentation during construction as recommended in the "Maine Erosion and Sediment Control Handbook for Construction: Best Management Practices" by the Cumberland County Soil and Water Conservation District.

B. <u>Maine Department of Environmental Protection (Maine DEP)</u>: As the proposed project does not propose more than an acre of new impervious, the project is subject only to the Maine DEP Chapter 500 Basic Standards for Erosion and Sedimentation Control.

VI. <u>Peak Flow Analysis</u>

This section has been prepared to discuss the management of the peak stormwater flow rates as a result of the development.

A. <u>Modeling Technique</u>: To evaluate drainage characteristics in pre-development and post-development conditions, a quantitative analysis was performed to determine peak rates of runoff for the 2, 10, and 25-year storm events. Runoff calculations were performed following the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds, Technical Release #55" and HydroCAD Stormwater Modeling System software. A 24-hour, SCS Type III storm distribution was used for analysis.

Storm Frequency Precipitation (in./24 hr)						
2-year	3.0					
10-year	4.7					
25-year	5.5					

The published 24-hour rainfall values for Cumberland County are as follows:

B. Drainage Characteristics (Pre-Development and Post-Development Watershed Delineation): Two Watershed Study Points (SP-1 and SP-2) were established to evaluate pre-development and post-development runoff conditions.

Study Point SP-1 represents the natural swale that runs along the southerly property line adjacent to the existing access drive and Deer Brook Apartments. Subcatchments 1 and 2, and 10, 20, 40 and 50 are tributary to this point in the pre-development and post-development models.

Study Point SP-2 represents the natural swale located within the steep slopes line north of the proposed development. Subcatchments 3 and 30 are tributary to this point in the pre-development and post-development models.

C. <u>Comparison</u>: The watershed areas and times of concentration of the post-development watersheds vary from the pre-development conditions due to the proposed site development and grading. Table-2 summarizes the results of

Table 2 - Stormwater Runoff Summary Table Pre-development vs. Post-development										
Total			Avg. We	eighted	Peak Rates of Runoff (cfs)					
Study Point	dy Watershed int Area (Ac)		Curve No. (Cn)		2-Year		10-Year		25-Year	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post
SP-1	2.29	2.55	71	76	1.27	1.16	3.35	2.89	4.4	3.14
SP-2	0.73	0.51	70	75	0.41	0.58	1.19	1.39	1.6	1.8

the hydrologic analysis of the project under pre-development and post-development conditions.

The result of the stormwater modeling at Study Point SP-1 indicates that the peak rate of runoff in the developed condition will be less than or equal to the pre-developed condition for all storm events.

The result of the stormwater modeling at Study Point SP-2 indicates an increase in the post-development condition for all three storm events. This is a slight increase (0.2 cfs in the 25-Year rain event), and the total discharge (sum of SP-1 and SP-2) to the Royal River in the post-development conditions for both the 10-Year and 25-Year events are less than those in the pre-development condition.

VII. <u>Erosion and Sedimentation Control</u>

An Erosion & Sedimentation Control Plan will be implemented as an integral part of the Stormwater Management Plan addressing erosion and sediment control during construction and the post-construction stabilization of the site. Temporary erosion control measures to be installed during construction will include riprap, erosion control blanket, and temporary/permanent re-vegetation measures. Included in this report as Attachment B is an Inspection, Maintenance and Housekeeping Plan. Within this plan are during construction and post-construction BMP requirements for the site. Also within this plan is an example Maintenance Log to keep records of any post-construction maintenance performed on the site. These guidelines have also been placed on the plan set for construction reference.

VIII. <u>Conclusions</u>

The proposed development has been designed to meet the requirements of the Town of North Yarmouth's Land Use Ordinance and Maine DEP's Chapter 500 Basic Standards. The proposed detention basin will reduce the overall stormwater discharge to the Royal River for 10-Year and 25-Year storm events. Additionally, erosion and sedimentation controls have been outlined to prevent unreasonable impacts on the site and to the surrounding environment. Prepared by,

SEBAGO TECHNICS, INC.

Robert A. McSorley, P.E. Senior Project Manager

BJB January 20, 2021

Attachment A

HydroCAD Output – Pre-development and Post-development TR-20 Model

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.018	74	>75% Grass cover, Good, HSG C (2)
0.118	98	Paved parking & roofs (1, 2)
2.753	70	Woods, Good, HSG C (1, 3)
0.131	72	Woods/grass comb., Good, HSG C (2)
3.020	71	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.902	HSG C	1, 2, 3
0.000	HSG D	
0.118	Other	1, 2
3.020		TOTAL AREA

88287PRE 7	ype III 24-hr 2-YR Rainfall=3.00"
Prepared by Sebago Technics, Inc.	Printed 1/20/2021
HydroCAD® 10.00-24 s/n 01856 © 2018 HydroCAD Software Solutions LLC	Page 4

Subcatchment1:	Runoff Area=2.068 ac 2.18% Impervious Runoff Depth>0.68" Flow Length=472' Tc=22.4 min CN=71 Runoff=1.05 cfs 0.117 af
Subcatchment2:	Runoff Area=0.222 ac 32.88% Impervious Runoff Depth>1.21" Flow Length=81' Slope=0.0680 '/' Tc=11.5 min CN=81 Runoff=0.28 cfs 0.022 af
Subcatchment3:	Runoff Area=0.730 ac 0.00% Impervious Runoff Depth>0.64" Flow Length=214' Tc=13.3 min CN=70 Runoff=0.41 cfs 0.039 af
Reach 201: 12" CULVER1 12.0" Round	Avg. Flow Depth=0.20' Max Vel=2.54 fps Inflow=0.28 cfs 0.022 af Pipe n=0.025 L=40.0' S=0.0315 '/' Capacity=3.29 cfs Outflow=0.28 cfs 0.022 af
Reach 202:	Avg. Flow Depth=0.05' Max Vel=0.94 fps Inflow=0.28 cfs 0.022 af n=0.035 L=140.0' S=0.0286 '/' Capacity=17.21 cfs Outflow=0.27 cfs 0.022 af
Pond SP-1: STUDY POIN	F 1 Inflow=1.27 cfs 0.139 af Primary=1.27 cfs 0.139 af
Pond SP-2: STUDY POIN	F 2 Inflow=0.41 cfs 0.039 af Primary=0.41 cfs 0.039 af
Total Run	off Area = 3.020 ac Runoff Volume = 0.179 af Average Runoff Depth = 0.71" 96.09% Pervious = 2.902 ac 3.91% Impervious = 0.118 ac

Summary for Subcatchment 1:

Runoff = 3.85 cfs @ 12.32 hrs, Volume= 0.396 af, Depth> 2.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

	Area (a	ac) C	N Des	cription		
	2.023 70 Woods, Good, HSG C					
	0.0	45 9	8 Pave	ed parking	& roofs	
	2.0	68 7	1 Weig	ghted Aver	age	
	2.0	23	97.8	2% Pervio	us Area	
	0.0	45	2.18	% Impervi	ous Area	
	Tc I	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.6	150	0.0800	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	4.8	322	0.0497	1.11		Shallow Concentrated Flow,
						Woodland $K_{V} = 5.0$ fps
_						

22.4 472 Total

Subcatchment 1:

Summary for Subcatchment 2:

Runoff = 0.74 cfs @ 12.16 hrs, Volume= 0.059 af, Depth> 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

_	Area (ac)	CN	N Desc	cription		
	0.073	98	8 Pave	ed parking	& roofs	
	0.018	74	4 >75%	% Grass co	over, Good	, HSG C
	0.131	72	2 Woo	ds/grass c	omb., Goo	d, HSG C
	0.222	8	1 Weig	ghted Aver	age	
	0.149		67.1	2% Pervio	us Area	
0.073 32.88% Impervious Area				8% Imperv	ious Area/	
	Tc Len	ngth	Slope	Velocity	Capacity	Description
_	(min) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)	
	11.5	81	0.0680	0.12		Sheet Flow,
						Woods: Light underbruch n= 0.400 P2= 3.00"

Woods: Light underbrush n= 0.400 P2= 3.00

Subcatchment 2:

Summary for Subcatchment 3:

Runoff = 1.60 cfs @ 12.19 hrs, Volume= 0.135 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

 Area	(ac) C	N Desc	cription		
 0.	730 7	0 Woo	ds, Good,	HSG C	
 0.	730	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	150	0.1800	0.20		Sheet Flow,
 0.6	64	0.1250	1.77		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
 13.3	214	Total			

Subcatchment 3:

Summary for Reach 201: 12" CULVERT

 Inflow Area =
 0.222 ac, 32.88% Impervious, Inflow Depth > 3.21" for 25-YR event

 Inflow =
 0.74 cfs @
 12.16 hrs, Volume=
 0.059 af

 Outflow =
 0.73 cfs @
 12.17 hrs, Volume=
 0.059 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.37 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.5 min

Peak Storage= 9 cf @ 12.16 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.29 cfs

12.0" Round Pipe n= 0.025 Corrugated metal Length= 40.0' Slope= 0.0315 '/' Inlet Invert= 178.31', Outlet Invert= 177.05'

Hydrograph Inflow Outflow 0.74 cfs 08 Inflow Area=0.222 ac 0.73 cfs 0.75 Avg. Flow Depth=0.32' 0.7 0.65 Max Vel=3.37 fps 0.6 12.0" 0.55 0.5 **Round Pipe ເ**ງິ 0.45 n=0.025 Flow 0.4 0.35 L=40.0' 0.3 S=0.0315 '/' 0.25 Capacity=3.29 cfs 0.2 0.15 0.1 0.05 0-6 ż 8 ġ 10 11 12 13 14 15 16 17 18 19 20 5 Time (hours)

Reach 201: 12" CULVERT

Summary for Reach 202:

Summary for Pond SP-1: STUDY POINT 1

Inflow Are	a =	2.290 ac,	5.15% Impervious,	Inflow Depth > 2.	39" for 25-YR event
Inflow	=	4.44 cfs @	12.30 hrs, Volume	e 0.455 af	
Primary	=	4.44 cfs @	12.30 hrs, Volume	e= 0.455 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SP-1: STUDY POINT 1

Summary for Pond SP-2: STUDY POINT 2

Inflow Are	a =	0.730 ac,	0.00% Impervious,	Inflow Depth > 2.	22" for 25-YR event
Inflow	=	1.60 cfs @	12.19 hrs, Volume	e 0.135 af	
Primary	=	1.60 cfs @	12.19 hrs, Volume	e= 0.135 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SP-2: STUDY POINT 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.205	74	>75% Grass cover, Good, HSG C (2, 3R, 10, 50)
0.030	89	Gravel roads, HSG C (10)
0.545	98	Paved parking & roofs (2, 3R, 10, 50)
1.150	70	Woods, Good, HSG C (3R, 10, 40)
0.130	72	Woods/grass comb., Good, HSG C (2)
3.060	77	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.515	HSG C	2, 3R, 10, 40, 50
0.000	HSG D	
0.545	Other	2, 3R, 10, 50
3.060		TOTAL AREA

88287POST	Тy
Prepared by Sebago Technics, Inc.	
HydroCAD® 10.00-24 s/n 01856 © 2018 HydroCAD Software Solutions	s LLC

Subcatchment2:	Flow Length=81'	Runoff Area=0.2 Slope=0.0680 '/'	221 ac 33.039 Tc=11.5 min	% Imperviou CN=81 Ru	s Runoff Dep noff=0.28 cfs	th>1.21" 0.022 af
Subcatchment3R:	F	Runoff Area=0 Now Length=188	.549 ac 7.29 Tc=11.5 min	% Imperviou CN=75 Ru	s Runoff Dep noff=0.48 cfs	th>0.87" 0.040 af
Subcatchment10:		Runoff Area=1.4 Flow Length=196'	450 ac 29.66° Tc=7.7 min	% Imperviou CN=81 Ru	s Runoff Dep noff=2.06 cfs	th>1.21" 0.146 af
Subcatchment40:	F	Runoff Area=0 Now Length=254	.730 ac 0.00 ⁰ Tc=18.7 min	% Imperviou CN=70 Ru	s Runoff Dep noff=0.36 cfs	th>0.64" 0.039 af
Subcatchment50:		Runoff Area=0 Flow Length=138'	.110 ac 1.82 ^o Tc=6.0 min	% Imperviou CN=74 Ru	s Runoff Dep noff=0.11 cfs	th>0.83" 0.008 af
Reach 201: 12" CULVERT 12.0" Round	A Pipe n=0.025 L=	vg. Flow Depth=0 =40.0' S=0.0315 '	.20' Max Vel= /' Capacity=3	=2.54 fps In .29 cfs Out	flow=0.28 cfs flow=0.28 cfs	0.022 af 0.022 af
Reach 202R:	A n=0.040 L=6	vg. Flow Depth=0 65.0' S=0.0154 '/'	.16' Max Vel= Capacity=34	=1.27 fps In 86 cfs Out	flow=1.22 cfs flow=1.21 cfs	0.205 af 0.205 af
Reach 4001: 12" CULVER 12.0" Round	T A Pipe n=0.025 L=	vg. Flow Depth=0 =70.0' S=0.0214 '	.25' Max Vel= /' Capacity=2	=2.41 fps In .71 cfs Out	flow=0.36 cfs flow=0.36 cfs	0.039 af 0.039 af
Pond P-1: POND		Peak Elev=17	5.36' Storage=	=1,882 cf In Out	flow=2.45 cfs tflow=1.22 cfs	0.208 af 0.205 af
Pond SP-1: STUDY POINT	2			Ir Prir	nflow=1.25 cfs mary=1.25 cfs	0.213 af 0.213 af
Pond SP-2: STUDY POINT	2			lr Prir	nflow=0.48 cfs mary=0.48 cfs	0.040 af 0.040 af
Total Run	off Area = 3.060	ac Runoff Vol	ume = 0.255	af Averad	e Runoff De	oth = 1.00"

82.19% Pervious = 2.515 ac 17.81% Impervious = 0.545 ac

88287POST	Тур
Prepared by Sebago Technics, Inc.	
HydroCAD® 10.00-24 s/n 01856 © 2018 HydroCAD Software Solutions	s LLC

Subcatchment2:	Flow Length=81'	Runoff Area=0. Slope=0.0680 '/'	221 ac 33.03 Tc=11.5 min	% Impervious CN=81 Run	Runoff Dep off=0.58 cfs	th>2.54" 0.047 af
Subcatchment3R:	F	Runoff Area=0 Flow Length=188').549 ac 7.29 Tc=11.5 min	% Impervious CN=75 Run	Runoff Dep off=1.17 cfs	th>2.04" 0.093 af
Subcatchment10:		Runoff Area=1. Flow Length=196	450 ac 29.66 ' Tc=7.7 min	% Impervious CN=81 Run	Runoff Dep off=4.31 cfs	th>2.54" 0.307 af
Subcatchment40:	F	Runoff Area=0 Flow Length=254').730 ac 0.00 Tc=18.7 min	% Impervious CN=70 Run	Runoff Dep off=1.04 cfs	th>1.66" 0.101 af
Subcatchment50:		Runoff Area=0 Flow Length=138).110 ac 1.82 ' Tc=6.0 min	% Impervious CN=74 Run	Runoff Dep off=0.27 cfs	th>1.97" 0.018 af
Reach 201: 12" CULVER 12.0" Round	/ Pipe n=0.025 L	Avg. Flow Depth=0 =40.0' S=0.0315	.29' Max Vel // Capacity=3	=3.16 fps Infl 3.29 cfs Outfl	ow=0.58 cfs ow=0.58 cfs	0.047 af 0.047 af
Reach 202R:	/ n=0.040 L=	Avg. Flow Depth=0 65.0' S=0.0154 '/	.24' Max Vel Capacity=34	=1.58 fps Infl 4.86 cfs Outfl	ow=2.36 cfs ow=2.36 cfs	0.451 af 0.451 af
Reach 4001: 12" CULVER 12.0" Round	R T Pipe n=0.025 L	Avg. Flow Depth=0 =70.0' S=0.0214	.43' Max Vel // Capacity=2	=3.22 fps Infl 2.71 cfs Outfl	ow=1.04 cfs ow=1.04 cfs	0.101 af 0.101 af
Pond P-1: POND		Peak Elev=17	6.25' Storage	=4,951 cf Infl Outfl	ow=5.45 cfs ow=2.36 cfs	0.455 af 0.451 af
Pond SP-1: STUDY POIN	Γ2			Infi Prim	ow=2.44 cfs ary=2.44 cfs	0.469 af 0.469 af
Pond SP-2: STUDY POIN	Γ2			Inf Prim	ow=1.17 cfs ary=1.17 cfs	0.093 af 0.093 af
Total Rur	off Area = 3 060	ac Runoff Vol	ume = 0 566	af Average	Runoff De	nth = 2 2

Total Runoff Area = 3.060 ac Runoff Volume = 0.566 af Average Runoff Depth = 2.22" 82.19% Pervious = 2.515 ac 17.81% Impervious = 0.545 ac

88287POST	Тур
Prepared by Sebago Technics, Inc.	
HydroCAD® 10.00-24 s/n 01856 © 2018 HydroCAD Software Solutions	LLC

Subcatchment2:	Flow Length=81'	Runoff Area=0.: Slope=0.0680 '/'	221 ac 33.03 Tc=11.5 min	% Impervious CN=81 Run	Runoff Dep off=0.73 cfs	th>3.21" 0.059 af
Subcatchment3R:	I	Runoff Area=0 Flow Length=188').549 ac 7.29 Tc=11.5 min	% Impervious CN=75 Run	Runoff Dep off=1.52 cfs	th>2.66" 0.121 af
Subcatchment10:		Runoff Area=1. Flow Length=196	450 ac 29.66 ' Tc=7.7 min	% Impervious CN=81 Run	Runoff Dep off=5.42 cfs	th>3.21" 0.388 af
Subcatchment40:	F	Runoff Area=0 Flow Length=254').730 ac 0.00 Tc=18.7 min	% Impervious CN=70 Run	Runoff Dep off=1.41 cfs	th>2.22" 0.135 af
Subcatchment50:		Runoff Area=0 Flow Length=138).110 ac 1.82 ' Tc=6.0 min	% Impervious CN=74 Run	Runoff Dep off=0.35 cfs	th>2.57" 0.024 af
Reach 201: 12" CULVER 12.0" Round	- Pipe n=0.025 L	Avg. Flow Depth=0 =40.0' S=0.0315	.32' Max Vel // Capacity=3	=3.37 fps Infl 3.29 cfs Outfl	ow=0.73 cfs ow=0.73 cfs	0.059 af 0.059 af
Reach 202R:	/ n=0.040 L=	Avg. Flow Depth=0 65.0' S=0.0154 '/'	.26' Max Vel Capacity=34	=1.64 fps Infl 4.86 cfs Outfl	ow=2.66 cfs ow=2.66 cfs	0.578 af 0.577 af
Reach 4001: 12" CULVER 12.0" Round	2 T Pipe n=0.025 L	Avg. Flow Depth=0 =70.0' S=0.0214 '	.51' Max Vel // Capacity=2	=3.48 fps Infl 2.71 cfs Outfl	ow=1.41 cfs ow=1.40 cfs	0.135 af 0.135 af
Pond P-1: POND		Peak Elev=17	6.71' Storage	=6,772 cf Infl Outf	ow=6.94 cfs low=2.66 cfs	0.582 af 0.578 af
Pond SP-1: STUDY POIN	Γ2			Inf Prim	low=2.75 cfs ary=2.75 cfs	0.601 af 0.601 af
Pond SP-2: STUDY POIN	Γ2			Inf Prim	low=1.52 cfs ary=1.52 cfs	0.121 af 0.121 af
Total Rur	off Area = 3.060	ac Runoff Vol	ume = 0 727	af Average	Runoff De	nth = 2 8

Total Runoff Area = 3.060 acRunoff Volume = 0.727 afAverage Runoff Depth = 2.85"82.19% Pervious = 2.515 ac17.81% Impervious = 0.545 ac

Summary for Subcatchment 2:

Runoff = 0.73 cfs @ 12.16 hrs, Volume= 0.059 af, Depth> 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

_	Area (ac)	C	N Dese	cription		
	0.073	9	8 Pave	ed parking	& roofs	
	0.018	7	4 >75	% Grass co	over, Good	, HSG C
	0.130	7	2 Woo	ds/grass c	omb., Goo	d, HSG C
	0.221	8	1 Weig	ghted Aver	age	
	0.148		66.9	7% Pervio	us Area	
	0.073		33.0	3% Imperv	ious Area	
	Tc Lei	ngth	Slope	Velocity	Capacity	Description
_	(min) (f	feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.5	81	0.0680	0.12		Sheet Flow,
						Woods: Light underbruch n= 0,400 P2= 3,00"

Woods: Light underbrush n= 0.400 P2= 3.00

Subcatchment 2:

Summary for Subcatchment 3R:

Runoff = 1.52 cfs @ 12.16 hrs, Volume= 0.121 af, Depth> 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

	Area ((ac) (CN [Des	cription		
	0.	160	70 \	Noc	ds, Good,	HSG C	
	0.0	040	98 F	Pave	ed parking	& roofs	
	0.3	349	74 >	>75	% Grass c	over, Good	, HSG C
	0.5	549	75 \	Vei	ghted Aver	age	
	0.	509	ç	92.7	1% Pervio	us Area	
	0.0	040	7	7.29	% Impervi	ous Area	
	Тс	Length	Slo	ре	Velocity	Capacity	Description
(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
	2.4	43	0.14	-00	0.30		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.00"
	9.0	105	0.21	00	0.19		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.00"
	0.1	40	0.12	250	11.19	67.13	Trap/Vee/Rect Channel Flow,
							Bot.W=3.00' D=1.00' Z= 3.0 '/' Top.W=9.00'
							n= 0.035 Earth, dense weeds
				-			

11.5 188 Total

Subcatchment 3R:

Summary for Subcatchment 10:

Runoff = 5.42 cfs @ 12.11 hrs, Volume= 0.388 af, Depth> 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

Area	(ac) C	N Des	cription		
0.	430	98 Pav	ed parking	& roofs	
0.	030	39 Grav	vel roads, l	HSG C	
0.	260	70 Woo	ods, Good,	HSG C	
0.	730	74 >75	% Grass c	over, Good	, HSG C
1.	450	31 Wei	ghted Aver	age	
1.	020	70.3	4% Pervio	us Area	
0.	430	29.6	6% Imperv	vious Area	
			-		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.0	120	0.0720	0.29		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.00"
0.5	30	0.0230	1.11		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
0.1	19	0.0530	4.67		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.1	27	0.2220	7.07		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
7.7	196	Total			

Subcatchment 10:

Summary for Subcatchment 40:

Runoff = 1.41 cfs @ 12.27 hrs, Volume= 0.135 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

 Area ((ac) C	N Desc	cription		
0.	730 7	'0 Woo	ds, Good,	HSG C	
0.	730	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
17.1	150	0.0860	0.15		Sheet Flow,
1.6	104	0.0480	1.10		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
18.7	254	Total			

Subcatchment 40:

Summary for Subcatchment 50:

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.024 af, Depth> 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.50"

	Area ((ac) C	N Des	cription		
	0.	108	74 >75	% Grass c	over, Good	, HSG C
	0.0	002 9	98 Pav	ed parking	& roofs	
	0.	110	74 Wei	ghted Aver	age	
	0.1	108	98.1	8% Pervio	us Area	
	0.0	002	1.82	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	100	0.1300	0.35		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.00"
	0.1	38	0.0530	6.13	49.01	Trap/Vee/Rect Channel Flow,
						Bot.W=3.00' D=1.00' Z= 5.0 '/' Top.W=13.00'
						n= 0.040 Earth, cobble bottom, clean sides
_	1.1					Direct Entry,
	6.0	138	Total			

Subcatchment 50:

Summary for Reach 201: 12" CULVERT

 Inflow Area =
 0.221 ac, 33.03% Impervious, Inflow Depth > 3.21" for 25-YR event

 Inflow =
 0.73 cfs @ 12.16 hrs, Volume=
 0.059 af

 Outflow =
 0.73 cfs @ 12.17 hrs, Volume=
 0.059 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.37 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 0.5 min

Peak Storage= 9 cf @ 12.16 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.29 cfs

12.0" Round Pipe n= 0.025 Corrugated metal Length= 40.0' Slope= 0.0315 '/' Inlet Invert= 178.31', Outlet Invert= 177.05'

Hydrograph Inflow Outflow 0.8 0.73 Inflow Area=0.221 ac 0.73 cfs 0.75 0.7 Avg. Flow Depth=0.32' 0.65 Max Vel=3.37 fps 0.6 12.0" 0.55 0.5 **Round Pipe (5**) 0.45 n=0.025 Flow 0.4 0.35 L=40.0' 0.3 S=0.0315 '/' 0.25 Capacity=3.29 cfs 0.2 0.15 0.1 0.05 0-6 ż 8 ġ 10 11 12 13 14 15 16 17 18 19 20 5 Time (hours)

Reach 201: 12" CULVERT

Summary for Reach 202R:

88287POST *Typ* Prepared by Sebago Technics, Inc. HydroCAD® 10.00-24 s/n 01856 © 2018 HydroCAD Software Solutions LLC

Summary for Reach 4001: 12" CULVERT

 Inflow Area =
 0.730 ac,
 0.00% Impervious,
 Inflow Depth >
 2.22"
 for 25-YR event

 Inflow =
 1.41 cfs @
 12.27 hrs,
 Volume=
 0.135 af

 Outflow =
 1.40 cfs @
 12.28 hrs,
 Volume=
 0.135 af,
 Atten= 1%,
 Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.48 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 0.7 min

Peak Storage= 28 cf @ 12.27 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.71 cfs

12.0" Round Pipe n= 0.025 Corrugated metal Length= 70.0' Slope= 0.0214 '/' Inlet Invert= 181.00', Outlet Invert= 179.50'

Hydrograph Inflow Outflow Inflow Area=0.730 ac Avg. Flow Depth=0.51' Max Vel=3.48 fps 12.0" **Round Pipe** Flow (cfs) n=0.025 L=70.0' S=0.0214 '/' Capacity=2.71 cfs 6 8 ġ 10 11 12 13 14 15 16 17 18 19 20 Time (hours)

Reach 4001: 12" CULVERT

Summary for Pond P-1: POND

Inflow Area	=	2.401 ac, 2	0.95% Impervi	ious, Inflow l	Depth >	2.91"	for 25-YF	R event
Inflow	=	6.94 cfs @	12.12 hrs, Vo	olume=	0.582 a	af		
Outflow	=	2.66 cfs @	12.51 hrs, Vo	olume=	0.578 a	af, Atte	n= 62%,	Lag= 23.2 min
Primary	=	2.66 cfs @	12.51 hrs, Vo	olume=	0.578 a	af		-

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 176.71' @ 12.51 hrs Surf.Area= 4,088 sf Storage= 6,772 cf

Plug-Flow detention time= 29.1 min calculated for 0.578 af (99% of inflow) Center-of-Mass det. time= 26.2 min (816.6 - 790.4)

Volume	Inve	ert Avail.Sto	rage Storage	Description		
#1 174.50' 28,49		99 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
174.5	50	300	0	0		
175.0)0	2,910	803	803		
176.0)0	3,562	3,236	4,039		
178.0	00	5,034	8,596	12,635		
180.0	00	10,830	15,864	28,499		
Device	Routing	Invert	Outlet Device	es		
#1 Primary 174.00' 12.0" Round Culvert L= 91.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 174.00' / 173.50' S= 0.0055 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf					Cc= 0.900	
#2 #3	#2Device 1174.50'8.0" Vert. Orifice/GrateC= 0.600#3Device 1176.00'24.0" Horiz. Orifice/GrateC= 0.600Limited to weir flow at low heads					

Primary OutFlow Max=2.66 cfs @ 12.51 hrs HW=176.71' (Free Discharge)

-1=Culvert (Barrel Controls 2.66 cfs @ 3.38 fps)

2=Orifice/Grate (Passes < 2.30 cfs potential flow)

-3=Orifice/Grate (Passes < 12.37 cfs potential flow)

Pond P-1: POND

Summary for Pond SP-1: STUDY POINT 2

Inflow A	rea =	2.511 ac, 20.11% Imp	ervious, Inflow	Depth > 2.87"	for 25-YR event
Inflow	=	2.75 cfs @ 12.45 hrs,	Volume=	0.601 af	
Primary	=	2.75 cfs @ 12.45 hrs,	Volume=	0.601 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SP-1: STUDY POINT 2

Summary for Pond SP-2: STUDY POINT 2

Inflow Area	a =	0.549 ac,	7.29% Impervious,	Inflow Depth > 2.	66" for 25-YR event
Inflow	=	1.52 cfs @	12.16 hrs, Volume	= 0.121 af	
Primary	=	1.52 cfs @	12.16 hrs, Volume	= 0.121 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SP-2: STUDY POINT 2

Attachment B

Inspection, Maintenance and Housekeeping Plan

88287

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN

Deer Brook Apartments, Phase 2 Gray Road (SR-115) North Yarmouth, Maine

January, 2021

Introduction

The following plan outlines the anticipated inspection and maintenance procedures for the erosion and sedimentation controls as well as stormwater management devices for the project site. Also, this plan outlines several housekeeping requirements that shall be followed during and after construction. These procedures should be followed in order to ensure the intended function of the designed measures and to prevent unreasonable adverse impacts to the surrounding environment.

The procedures outlined in this inspection and maintenance plan are provided as an overview of the anticipated practices to be used on this site. In some instances, additional measures may be required due to unexpected conditions. For additional detail on any of the erosion and sedimentation control measures or stormwater management devices to be utilized on this project, refer to the most recently revised edition of the "Maine Erosion and Sedimentation Control BMP" manual and/or the "Stormwater Management for Maine: Best Management Practices" manual as published by the Maine Department of Environmental Protection (MDEP).

During Construction

- 1. **Inspection:** During the construction process, it is the Contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section. These responsibilities include inspecting disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as before and after a storm event, and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in any applicable permits, shall conduct the inspections.
- 2. **Maintenance:** All measures shall be maintained in an effective operating condition until areas are permanently stabilized. If Best Management Practices (BMPs) need to be maintained or modified, additional BMPs are necessary, or other corrective action is needed, implementation must be completed within 7 calendar days and prior to any storm event (rainfall).

- 3. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained on-site. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, material storage areas, and vehicle access points to the site. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.
- 4. **Specific Inspection and Maintenance Tasks:** The following is a list of erosion control and stormwater management measures and the specific inspection and maintenance tasks to be performed during construction.

A. <u>Sediment Barriers:</u>

- Hay bale barriers, silt fences, and filter berms shall be inspected immediately after each rainfall and at least daily during prolonged rainfall.
- If the fabric on a silt fence or filter barrier should decompose or become ineffective prior to the end of the expected usable life and the barrier is still necessary, it shall be replaced.
- Sediment deposits should be removed after each storm event. They must be removed before deposits reach approximately one-half the height of the barrier.
- Filter berms shall be reshaped as needed.
- Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared, and seeded.
- B. <u>Riprap Materials:</u>
 - Once a riprap installation has been completed, it should require very little maintenance. It shall, however, be inspected periodically to determine if high flows have caused scour beneath the riprap or dislodged any of the stone.
- C. <u>Erosion Control Blankets:</u>
 - Inspect these reinforced areas semi-annually and after significant rainfall events for slumping, sliding, seepage, and scour. Pay close attention to unreinforced areas adjacent to the erosion control blankets, which may experience accelerated erosion.
 - Review all applicable inspection and maintenance procedures recommended by the specific blanket manufacturer. These tasks shall be included in addition to the requirements of this plan.

D. <u>Temporary Storm Drain Inlet Protection:</u>

- The inlet protection structure shall be inspected before each rain event and repaired as necessary.
- Sediment shall be removed and the storm drain sediment barrier restored to its original dimensions when the sediment has accumulated to half of the design depth of the trap.
- Structures shall be removed upon permanent stabilization of the tributary area.
- Upon removal of the structure, all accumulated sediments downstream of the structure shall be cleaned from the storm drain system.
- E. <u>Stabilized Construction Entrances/Exits:</u>
 - The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way.
 - When the control pad becomes ineffective, the stone shall be removed along with the collected soil material. The entrance should then be reconstructed.
 - Areas that have received mud-tracking or sediment deposits shall be swept or washed. Washing shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device (not into storm drains, ditches, or waterways).
- F. <u>Temporary Seed and Mulch:</u>
 - Mulched areas should be inspected after rain events to check for rill erosion.
 - If less than 90% of the soil surface is covered by mulch, additional mulch shall be applied in bare areas.
 - In applications where seeding and mulch have been applied in conjunction with erosion control blankets, the blankets must be inspected after rain events for dislocation or undercutting.
 - Mulch shall continue to be reapplied until 95% of the soil surface has established temporary vegetative cover.
- G. <u>Stabilized Temporary Drainage Swales:</u>
 - Sediment accumulation in the swale shall be removed once the cross section of the swale is reduced by 25%.
 - The swales shall be inspected after rainfall events. Any evidence of sloughing of the side slopes or channel erosion shall be repaired and corrective action should be taken to prevent reoccurrence of the problem.
 - In addition to the stabilized lining of the channel (i.e. erosion control blankets), stone check dams may be needed to further reduce channel velocity.
- 5. **Housekeeping:** The following general performance standards apply to the proposed project.

- A. <u>Spill prevention</u>: Controls must be used to prevent pollutants from being discharged from materials on-site, including storage practices to minimize exposure of the materials to stormwater, and appropriate spill prevention, containment, and response planning and implementation.
- B. <u>Groundwater protection</u>: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors, accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials.
- C. <u>Fugitive sediment and dust</u>: Actions must be taken to insure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control.
- D. <u>Debris and other materials</u>: Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.
- E. <u>Trench or foundation dewatering</u>: Trench dewatering is the removal of water from trenches, foundations, cofferdams, ponds, and other areas within the construction area that retain water after excavation. In most cases, the collected water is heavily silted and hinders correct and safe construction practices. The collected water must be removed from the ponded area, either through gravity or pumping, and must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved.

After Construction

- 1. **Inspection:** After construction, it is the responsibility of the owner or assigned heirs to comply with the inspection and maintenance procedures outlined in this section. All measures must be maintained in effective operating condition. A person with knowledge of erosion and stormwater control, including the standards and conditions in all applicable permits, shall conduct the inspections.
- 2. **Specific Inspection and Maintenance Tasks:** The following is a list of permanent erosion control and stormwater management measures and the inspection and maintenance tasks to be performed after construction.
 - A. <u>Vegetated Areas:</u>
 - Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains to identify active or potential erosion

problems.

- Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
- B. <u>Ditches, Swales, and Other Open Channels:</u>
 - Inspect ditches, swales and other open stormwater channels in the spring, in the late Fall, and after heavy rains to remove any obstructions to flow. Remove accumulated sediments and debris, remove woody vegetative growth that could obstruct flow, and repair any erosion of the ditch lining.
 - Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity.
 - Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable.
 - If the ditch has a riprap lining, replace riprap in areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged.
- C. <u>Culverts:</u>
 - Inspect culverts in the spring, in the late fall, and after heavy rains to remove any obstructions to flow.
 - Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit.
 - Inspect and repair any erosion damage at the culvert's inlet and outlet.
- D. <u>Catch Basins:</u>
 - Inspect and, if required, clean-out catch basins at least once a year, preferably in early spring.
 - Clean out must include the removal and legal disposal of accumulated sediments and debris at the bottom of the basin, at any inlet grates, at any inflow channels to the basin, and at any pipes between basins.
 - If the basin outlet is designed to trap floatable materials, then remove the floating debris and any floating oils (using oil-absorptive pads).
- E. <u>Winter Sanding:</u>
 - Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.
 - Accumulations on pavement may be removed by pavement sweeping.
 - Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader or other acceptable method.

F. <u>Detention Basin:</u>

- The inlet and outlet of the pond should be checked periodically to ensure that flow structures and emergency spillway are not blocked by debris. All ditches or pipes discharging runoff to the basin should also be checked for debris that may obstruct flow.
- Inspect the berm surrounding the detention basin for erosion or sloughing of the slopes. Remove, as necessary, any woody vegetation that may destabilize the embankment or emergency spillway(s). If damage is evident, contact a qualified licensed professional engineer for recommendations on remedial measures.
- Inspect the basin for accumulated sediment and remove, as necessary. All areas where sediment has been removed shall be reseeded and properly stabilized.
- 1. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of controls. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. A sample "Stormwater Inspection and Maintenance Form" has been included as Attachment 1 of this Inspection, Maintenance, and Housekeeping Plan.
- 2. **Duration of Maintenance:** Perform maintenance as described and required for any associated permits unless and until the system is formally accepted by a municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the MDEP stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with MDEP standards. Upon such assumption of responsibility, and approval by the MDEP, the municipality, quasi-municipal district, or association becomes a co-permittee for this purpose only and must comply with all terms and conditions of the permit.

Attachments

Attachment 1 – Sample Stormwater Inspection and Maintenance Form

Stormwater Management Facility Maintenance Log Deer Brook Apartments, Phase 2 Gray Road (SR-115), North Yarmouth, Maine STI #88287

Sebago Technics 75 John Roberts Road, Suite 4A South Portland, ME 04106 p. 207-200-2100 f. 856-2206

Wet Pond #	Inspection & Maintenance Description	Inspection & Maintenance Interval	Date Performed	Date Performed	Date Performed	Date Performed	Date Performed
Inspector & Weather Conditions							
Embankment &	Inspect all vegetated areas for erosion	Monthly					
Other Vegetated Areas	Inspect embankment for erosion, settling, and structural failure	Annually					
Ditches & Swales	Inspect for erosion and remove sediment	Semi-annually and/or after rains >1 inch					
Culverts & Storm Drains	Inspect for accumulated sediment and/or erosion	Semi-annually and/or after rains >1 inch					
Permanent Pool	Inspect inlets and outlets for erosion or blockage	Monthly					
	Inspect for sediment accumulation	Annually					
Debris Found	(Note approximate amount of accumulated sediment removed)						
Sediment Disposal	(Note location of sediment disposal)						
Comments							

NOTES:	

Attachment C

Pre-development Watershed Map

			G	RAPHIC	SCALE	
TION POND	30	0	15 	30	60	120
BOUNDARY				(IN FE 1 inch =	ET) 30 ft.	

Attachment D

Post-development Watershed Map

